Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.235
1.
Elife ; 122024 Apr 23.
Article En | MEDLINE | ID: mdl-38652107

Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.


Cell Differentiation , Gene Regulatory Networks , Cell Differentiation/genetics , Animals , Hematopoiesis/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Embryonic Development/genetics , Cell Transdifferentiation/genetics , Humans
2.
Blood Cancer Discov ; 5(3): 139-141, 2024 May 01.
Article En | MEDLINE | ID: mdl-38651690

SUMMARY: The spatial distribution of cells carrying clonal hematopoiesis mutations in the bone marrow and the potential role of interactions with the microenvironment are largely unknown. This study takes clonal evolution to the spatial level by describing a novel technique examining the spatial location of mutated clones in the bone marrow and the first evidence that mutated hematopoietic clones are spatially constrained and have heterogenous locations within millimeters of distance. See related article by Young et al., p. 153 (10).


Clonal Evolution , Clonal Hematopoiesis , Mutation , Clonal Evolution/genetics , Humans , Clonal Hematopoiesis/genetics , Bone Marrow , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology
3.
PLoS One ; 19(4): e0300623, 2024.
Article En | MEDLINE | ID: mdl-38564577

Regulation of protein synthesis is a key factor in hematopoietic stem cell maintenance and differentiation. Rio-kinase 2 (RIOK2) is a ribosome biogenesis factor that has recently been described an important regulator of human blood cell development. Additionally, we have previously identified RIOK2 as a regulator of protein synthesis and a potential target for the treatment of acute myeloid leukemia (AML). However, its functional relevance in several organ systems, including normal hematopoiesis, is not well understood. Here, we investigate the consequences of RIOK2 loss on normal hematopoiesis using two different conditional knockout mouse models. Using competitive and non-competitive bone marrow transplantations, we demonstrate that RIOK2 is essential for the differentiation of hematopoietic stem and progenitor cells (HSPCs) as well as for the maintenance of fully differentiated blood cells in vivo as well as in vitro. Loss of RIOK2 leads to rapid death in full-body knockout mice as well as mice with RIOK2 loss specific to the hematopoietic system. Taken together, our results indicate that regulation of protein synthesis and ribosome biogenesis by RIOK2 is essential for the function of the hematopoietic system.


Hematopoietic Stem Cells , Leukemia, Myeloid, Acute , Animals , Humans , Mice , Bone Marrow Transplantation , Cell Differentiation/physiology , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid, Acute/metabolism , Mice, Knockout
4.
Hereditas ; 161(1): 14, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38685093

BACKGROUND: Nicotinamide phosphoribosyltransferase (Nampt) is required for recycling NAD+ in numerous cellular contexts. Morpholino-based knockdown of zebrafish nampt-a has been shown to cause abnormal development and defective hematopoiesis concomitant with decreased NAD+ levels. However, surprisingly, nampt-a mutant zebrafish were recently found to be viable, suggesting a discrepancy between the phenotypes in knockdown and knockout conditions. Here, we address this discrepancy by directly comparing loss-of-function approaches that result in identical defective transcripts in morphants and mutants. RESULTS: Using CRISPR/Cas9-mediated mutagenesis, we generated nampt-a mutant lines that carry the same mis-spliced mRNA as nampt-a morphants. Despite reduced NAD+ levels and perturbed expression of specific blood markers, nampt-a mutants did not display obvious developmental defects and were found to be viable. In contrast, injection of nampt-a morpholinos into wild-type or mutant nampt-a embryos caused aberrant phenotypes. Moreover, nampt-a morpholinos caused additional reduction of blood-related markers in nampt-a mutants, suggesting that the defects observed in nampt-a morphants can be partially attributed to off-target effects of the morpholinos. CONCLUSIONS: Our findings show that zebrafish nampt-a mutants are viable despite reduced NAD+ levels and a perturbed hematopoietic gene expression program, indicating strong robustness of primitive hematopoiesis during early embryogenesis.


Hematopoiesis , Nicotinamide Phosphoribosyltransferase , Zebrafish , Animals , Zebrafish/genetics , Nicotinamide Phosphoribosyltransferase/genetics , Hematopoiesis/genetics , Mutation , Zebrafish Proteins/genetics , Phenotype , CRISPR-Cas Systems , NAD/metabolism , Gene Knockdown Techniques , Morpholinos/genetics
5.
Free Radic Biol Med ; 219: 184-194, 2024 Jul.
Article En | MEDLINE | ID: mdl-38636716

Hematopoietic stem cells (HSCs) replenish blood cells under steady state and on demand, that exhibit therapeutic potential for Bone marrow failures and leukemia. Redox signaling plays key role in immune cells and hematopoiesis. However, the role of reactive nitrogen species in hematopoiesis remains unclear and requires further investigation. We investigated the significance of inducible nitric oxide synthase/nitric oxide (iNOS/NO) signaling in hematopoietic stem and progenitor cells (HSPCs) and hematopoiesis under steady-state and stress conditions. HSCs contain low levels of NO and iNOS under normal conditions, but these increase upon bone marrow stress. iNOS-deficient mice showed subtle changes in peripheral blood cells but significant alterations in HSPCs, including increased HSCs and multipotent progenitors. Surprisingly, iNOS-deficient mice displayed heightened susceptibility and delayed recovery of blood progeny following 5-Fluorouracil (5-FU) induced hematopoietic stress. Loss of quiescence and increased mitochondrial stress, indicated by elevated MitoSOX and MMPhi HSCs, were observed in iNOS-deficient mice. Furthermore, pharmacological approaches to mitigate mitochondrial stress rescued 5-FU-induced HSC death. Conversely, iNOS-NO signaling was required for demand-driven mitochondrial activity and proliferation during hematopoietic recovery, as iNOS-deficient mice and NO signaling inhibitors exhibit reduced mitochondrial activity. In conclusion, our study challenges the conventional view of iNOS-derived NO as a cytotoxic molecule and highlights its intriguing role in HSPCs. Together, our findings provide insights into the crucial role of the iNOS-NO-mitochondrial axis in regulating HSPCs and hematopoiesis.


Fluorouracil , Hematopoiesis , Hematopoietic Stem Cells , Mitochondria , Nitric Oxide Synthase Type II , Nitric Oxide , Signal Transduction , Animals , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Hematopoietic Stem Cells/metabolism , Mice , Mitochondria/metabolism , Fluorouracil/pharmacology , Hematopoiesis/genetics , Nitric Oxide/metabolism , Regeneration , Mice, Knockout , Bone Marrow/metabolism , Mice, Inbred C57BL
6.
Nat Med ; 30(3): 810-817, 2024 Mar.
Article En | MEDLINE | ID: mdl-38454125

Age is a predominant risk factor for acute kidney injury (AKI), yet the biological mechanisms underlying this risk are largely unknown. Clonal hematopoiesis of indeterminate potential (CHIP) confers increased risk for several chronic diseases associated with aging. Here we sought to test whether CHIP increases the risk of AKI. In three population-based epidemiology cohorts, we found that CHIP was associated with a greater risk of incident AKI, which was more pronounced in patients with AKI requiring dialysis and in individuals with somatic mutations in genes other than DNMT3A, including mutations in TET2 and JAK2. Mendelian randomization analyses supported a causal role for CHIP in promoting AKI. Non-DNMT3A-CHIP was also associated with a nonresolving pattern of injury in patients with AKI. To gain mechanistic insight, we evaluated the role of Tet2-CHIP and Jak2V617F-CHIP in two mouse models of AKI. In both models, CHIP was associated with more severe AKI, greater renal proinflammatory macrophage infiltration and greater post-AKI kidney fibrosis. In summary, this work establishes CHIP as a genetic mechanism conferring impaired kidney function recovery after AKI via an aberrant inflammatory response mediated by renal macrophages.


Acute Kidney Injury , Clonal Hematopoiesis , Animals , Mice , Humans , Clonal Hematopoiesis/genetics , Hematopoiesis/genetics , Risk Factors , Aging/genetics , Acute Kidney Injury/genetics , Mutation/genetics
7.
Medicine (Baltimore) ; 103(12): e37487, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38518015

GATA transcriptional factors are zinc finger DNA binding proteins that regulate transcription during development and cell differentiation. The 3 important GATA transcription factors GATA1, GATA2 and GATA3 play essential role in the development and maintenance of hematopoietic systems. GATA1 is required for the erythroid and Megakaryocytic commitment during hematopoiesis. GATA2 is crucial for the proliferation and survival of early hematopoietic cells, and is also involved in lineage specific transcriptional regulation as the dynamic partner of GATA1. GATA3 plays an essential role in T lymphoid cell development and immune regulation. As a result, mutations in gene encoding the GATA transcription factor or alteration in the protein expression level or their function have been linked to a variety of human haematological malignancies. This review presents a summary of recent understanding of how the disrupted biological function of GATA may contribute to hematologic diseases.


GATA Transcription Factors , Hematologic Neoplasms , Humans , GATA Transcription Factors/genetics , GATA Transcription Factors/metabolism , Gene Expression Regulation , Cell Differentiation , Hematopoiesis/genetics , Hematologic Neoplasms/genetics
9.
Commun Biol ; 7(1): 374, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38548886

The transcription factor Growth Factor Independence 1B (GFI1B) recruits Lysine Specific Demethylase 1 A (LSD1/KDM1A) to stimulate gene programs relevant for megakaryocyte and platelet biology. Inherited pathogenic GFI1B variants result in thrombocytopenia and bleeding propensities with varying intensity. Whether these affect similar gene programs is unknow. Here we studied transcriptomic effects of four patient-derived GFI1B variants (GFI1BT174N,H181Y,R184P,Q287*) in MEG01 megakaryoblasts. Compared to normal GFI1B, each variant affected different gene programs with GFI1BQ287* uniquely failing to repress myeloid traits. In line with this, single cell RNA-sequencing of induced pluripotent stem cell (iPSC)-derived megakaryocytes revealed a 4.5-fold decrease in the megakaryocyte/myeloid cell ratio in GFI1BQ287* versus normal conditions. Inhibiting the GFI1B-LSD1 interaction with small molecule GSK-LSD1 resulted in activation of myeloid genes in normal iPSC-derived megakaryocytes similar to what was observed for GFI1BQ287* iPSC-derived megakaryocytes. Thus, GFI1B and LSD1 facilitate gene programs relevant for megakaryopoiesis while simultaneously repressing programs that induce myeloid differentiation.


Hematopoiesis , Megakaryocytes , Humans , Megakaryocytes/metabolism , Cell Differentiation/genetics , Hematopoiesis/genetics , Histone Demethylases/genetics , Histone Demethylases/metabolism , Gene Expression Regulation , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Repressor Proteins/metabolism
10.
Semin Hematol ; 61(1): 51-60, 2024 Feb.
Article En | MEDLINE | ID: mdl-38431463

Loss of function TET2 mutation (TET2MT) is one of the most frequently observed lesions in clonal hematopoiesis (CH). TET2 a member TET-dioxygenase family of enzymes that along with TET1 and TET3, progressively oxidize 5-methyl cytosine (mC) resulting in regulated demethylation of promoter, enhancer and silencer elements of the genome. This process is critical for efficient transcription that determine cell lineage fate, proliferation and survival and the maintenance of the genomic fidelity with aging of the organism. Partial or complete loss-of-function TET2 mutations create regional and contextual DNA hypermethylation leading to gene silencing or activation that result in skewed myeloid differentiation and clonal expansion. In addition to myeloid skewing, loss of TET2 creates differentiation block and provides proliferative advantage to hematopoietic stem and progenitor cells (HSPCs). TET2MT is a prototypical lesion in CH, since the mutant clones dominate during stress hematopoiesis and often associates with evolution of myeloid malignancies. TET2MT clones has unique privilege to create and persist in pro-inflammatory milieu. Despite extensive knowledge regarding biochemical mechanisms underlying distorted myeloid differentiation, and enhanced self-replication of TET2MT HSPC, the mechanistic link of various pathogenesis associated with TET2 loss in CHIP is less understood. Here we review the recent development in TET2 biology and its probable mechanistic link in CH with aging and inflammation. We also explored the therapeutic strategies of targeting TET2MT associated CHIP and the utility of targeting TET2 in normal hematopoiesis and somatic cell reprograming. We explore the biochemical mechanisms and candidate therapies that emerged in last decade of research.


Clonal Hematopoiesis , Dioxygenases , Humans , Clonal Hematopoiesis/genetics , Mutation , DNA Methylation , Cell Differentiation/genetics , Hematopoiesis/genetics , Mixed Function Oxygenases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases/genetics
12.
Elife ; 132024 Mar 25.
Article En | MEDLINE | ID: mdl-38526524

During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.


Hematopoiesis , Macrophages , Animals , Mice , Hematopoiesis/genetics , Hematopoietic Stem Cells , Cell Differentiation , Erythropoiesis , Liver , Stem Cell Niche/genetics
13.
Bioinformatics ; 40(4)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38485690

MOTIVATION: The acquisition of somatic mutations in hematopoietic stem and progenitor stem cells with resultant clonal expansion, termed clonal hematopoiesis (CH), is associated with increased risk of hematologic malignancies and other adverse outcomes. CH is generally present at low allelic fractions, but clonal expansion and acquisition of additional mutations leads to hematologic cancers in a small proportion of individuals. With high depth and high sensitivity sequencing, CH can be detected in most adults and its clonal trajectory mapped over time. However, accurate CH variant calling is challenging due to the difficulty in distinguishing low frequency CH mutations from sequencing artifacts. The lack of well-validated bioinformatic pipelines for CH calling may contribute to lack of reproducibility in studies of CH. RESULTS: Here, we developed ArCH, an Artifact filtering Clonal Hematopoiesis variant calling pipeline for detecting single nucleotide variants and short insertions/deletions by combining the output of four variant calling tools and filtering based on variant characteristics and sequencing error rate estimation. ArCH is an end-to-end cloud-based pipeline optimized to accept a variety of inputs with customizable parameters adaptable to multiple sequencing technologies, research questions, and datasets. Using deep targeted sequencing data generated from six acute myeloid leukemia patient tumor: normal dilutions, 31 blood samples with orthogonal validation, and 26 blood samples with technical replicates, we show that ArCH improves the sensitivity and positive predictive value of CH variant detection at low allele frequencies compared to standard application of commonly used variant calling approaches. AVAILABILITY AND IMPLEMENTATION: The code for this workflow is available at: https://github.com/kbolton-lab/ArCH.


Clonal Hematopoiesis , Hematologic Neoplasms , Adult , Humans , High-Throughput Nucleotide Sequencing , Software , Reproducibility of Results , Mutation , Hematopoiesis/genetics
14.
Cancer Med ; 13(5): e7093, 2024 Mar.
Article En | MEDLINE | ID: mdl-38497538

BACKGROUND: The occurrence of somatic mutations in patients with no evidence of hematological disorders is called clonal hematopoiesis (CH). CH, whose subtypes include CH of indeterminate potential and clonal cytopenia of undetermined significance, has been associated with both hematologic cancers and systemic comorbidities. However, CH's effect on patients, especially those with concomitant malignancies, is not fully understood. METHODS: We performed a retrospective evaluation of all patients with CH at a tertiary cancer center. Patient characteristics, mutational data, and outcomes were collected and analyzed. RESULTS: Of 78 individuals included, 59 (76%) had a history of cancer and 60 (77%) had moderate to severe comorbidity burdens. DNMT3A, TET2, TP53, and ASXL1 were the most common mutations. For the entire cohort, the 2-year overall survival rate was 79% (95% CI: 70, 90), while the median survival was not reached. Of 20 observed deaths, most were related to primary malignancies (n = 7, 35%), comorbidities (n = 4, 20%), or myeloid neoplasms (n = 4, 20%). Twelve patients (15%) experienced transformation to a myeloid neoplasm. According to the clonal hematopoiesis risk score, the 3-year transformation rate was 0% in low-risk, 15% in intermediate-risk (p = 0.098), and 28% in high-risk (p = 0.05) patients. By multivariate analysis, transformation was associated with variant allele frequency ≥0.2 and hemoglobin <10 g/dL. CONCLUSIONS: In a population including mostly cancer patients, CH was associated with comorbidities and myeloid transformation in patients with higher mutational burdens and anemia. Nevertheless, such patients were less likely to die of their myeloid neoplasm than of primary malignancy or comorbidities.


Myeloproliferative Disorders , Neoplasms , Humans , Clonal Hematopoiesis , Retrospective Studies , Hematopoiesis/genetics , Neoplasms/epidemiology , Neoplasms/genetics , Myeloproliferative Disorders/epidemiology , Myeloproliferative Disorders/genetics , Comorbidity
15.
Elife ; 132024 Mar 18.
Article En | MEDLINE | ID: mdl-38497789

The vertebrate kidneys play two evolutionary conserved roles in waste excretion and osmoregulation. Besides, the kidney of fish is considered as a functional ortholog of mammalian bone marrow that serves as a hematopoietic hub for generating blood cell lineages and immunological responses. However, knowledge about the properties of kidney hematopoietic cells, and the functionality of the kidney in fish immune systems remains to be elucidated. To this end, our present study generated a comprehensive atlas with 59 hematopoietic stem/progenitor cell (HSPC) and immune-cells types from zebrafish kidneys via single-cell transcriptome profiling analysis. These populations included almost all known cells associated with innate and adaptive immunity, and displayed differential responses to viral infection, indicating their diverse functional roles in antiviral immunity. Remarkably, HSPCs were found to have extensive reactivities to viral infection, and the trained immunity can be effectively induced in certain HSPCs. In addition, the antigen-stimulated adaptive immunity can be fully generated in the kidney, suggesting the kidney acts as a secondary lymphoid organ. These results indicated that the fish kidney is a dual-functional entity with functionalities of both primary and secondary lymphoid organs. Our findings illustrated the unique features of fish immune systems, and highlighted the multifaced biology of kidneys in ancient vertebrates.


Perciformes , Virus Diseases , Animals , Zebrafish , Hematopoiesis/genetics , Kidney , Adaptive Immunity , Sequence Analysis, RNA , Mammals
16.
Nat Commun ; 15(1): 2255, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38490977

An understanding of the mechanisms regulating embryonic hematopoietic stem cell (HSC) development would facilitate their regeneration. The aorta-gonad-mesonephros region is the site for HSC production from hemogenic endothelial cells (HEC). While several distinct regulators are involved in this process, it is not yet known whether macroautophagy (autophagy) plays a role in hematopoiesis in the pre-liver stage. Here, we show that different states of autophagy exist in hematopoietic precursors and correlate with hematopoietic potential based on the LC3-RFP-EGFP mouse model. Deficiency of autophagy-related gene 5 (Atg5) specifically in endothelial cells disrupts endothelial to hematopoietic transition (EHT), by blocking the autophagic process. Using combined approaches, including single-cell RNA-sequencing (scRNA-seq), we have confirmed that Atg5 deletion interrupts developmental temporal order of EHT to further affect the pre-HSC I maturation, and that autophagy influences hemogenic potential of HEC and the formation of pre-HSC I likely via the nucleolin pathway. These findings demonstrate a role for autophagy in the formation/maturation of hematopoietic precursors.


Hemangioblasts , Hematopoietic Stem Cells , Animals , Mice , Hematopoietic Stem Cells/metabolism , Cell Differentiation , Embryo, Mammalian , Hematopoiesis/genetics , Transcription Factors/metabolism , Autophagy/genetics , Mesonephros
17.
Chin Med J (Engl) ; 137(9): 1033-1043, 2024 May 05.
Article En | MEDLINE | ID: mdl-38545694

ABSTRACT: Epitranscriptomics focuses on the RNA-modification-mediated post-transcriptional regulation of gene expression. The past decade has witnessed tremendous progress in our understanding of the landscapes and biological functions of RNA modifications, as prompted by the emergence of potent analytical approaches. The hematopoietic system provides a lifelong supply of blood cells, and gene expression is tightly controlled during the differentiation of hematopoietic stem cells (HSCs). The dysregulation of gene expression during hematopoiesis may lead to severe disorders, including acute myeloid leukemia (AML). Emerging evidence supports the involvement of the mRNA modification system in normal hematopoiesis and AML pathogenesis, which has led to the development of small-molecule inhibitors that target N6-methyladenosine (m 6 A) modification machinery as treatments. Here, we summarize the latest findings and our most up-to-date information on the roles of m 6 A and N7-methylguanine in both physiological and pathological conditions in the hematopoietic system. Furthermore, we will discuss the therapeutic potential and limitations of cancer treatments targeting m 6 A.


Adenosine , Adenosine/analogs & derivatives , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Adenosine/metabolism , Hematopoietic System , Hematopoietic Stem Cells/metabolism , Hematopoiesis/genetics , RNA Processing, Post-Transcriptional/genetics
18.
Leukemia ; 38(5): 936-946, 2024 May.
Article En | MEDLINE | ID: mdl-38514772

Clonal hematopoiesis (CH) defines a premalignant state predominantly found in older persons that increases the risk of developing hematologic malignancies and age-related inflammatory diseases. However, the risk for malignant transformation or non-malignant disorders is variable and difficult to predict, and defining the clinical relevance of specific candidate driver mutations in individual carriers has proved to be challenging. In addition to the cell-intrinsic mechanisms, mutant cells rely on and alter cell-extrinsic factors from the bone marrow (BM) niche, which complicates the prediction of a mutant cell's fate in a shifting pre-malignant microenvironment. Therefore, identifying the insidious and potentially broad impact of driver mutations on supportive niches and immune function in CH aims to understand the subtle differences that enable driver mutations to yield different clinical outcomes. Here, we review the changes in the aging BM niche and the emerging evidence supporting the concept that CH can progressively alter components of the local BM microenvironment. These alterations may have profound implications for the functionality of the osteo-hematopoietic niche and overall bone health, consequently fostering a conducive environment for the continued development and progression of CH. We also provide an overview of the latest technology developments to study the spatiotemporal dependencies in the CH BM niche, ideally in the context of longitudinal studies following CH over time. Finally, we discuss aspects of CH carrier management in clinical practice, based on work from our group and others.


Aging , Clonal Hematopoiesis , Stem Cell Niche , Humans , Clonal Hematopoiesis/genetics , Aging/genetics , Aging/physiology , Bone Marrow/metabolism , Bone Marrow/pathology , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Mutation , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Animals , Hematopoiesis/genetics
19.
Cell Stem Cell ; 31(3): 378-397.e12, 2024 03 07.
Article En | MEDLINE | ID: mdl-38402617

Mechanisms governing the maintenance of blood-producing hematopoietic stem and multipotent progenitor cells (HSPCs) are incompletely understood, particularly those regulating fate, ensuring long-term maintenance, and preventing aging-associated stem cell dysfunction. We uncovered a role for transitory free cytoplasmic iron as a rheostat for adult stem cell fate control. We found that HSPCs harbor comparatively small amounts of free iron and show the activation of a conserved molecular response to limited iron-particularly during mitosis. To study the functional and molecular consequences of iron restriction, we developed models allowing for transient iron bioavailability limitation and combined single-molecule RNA quantification, metabolomics, and single-cell transcriptomic analyses with functional studies. Our data reveal that the activation of the limited iron response triggers coordinated metabolic and epigenetic events, establishing stemness-conferring gene regulation. Notably, we find that aging-associated cytoplasmic iron loading reversibly attenuates iron-dependent cell fate control, explicating intervention strategies for dysfunctional aged stem cells.


Hematopoiesis , Iron , Hematopoiesis/genetics , Iron/metabolism , Hematopoietic Stem Cells/metabolism , Multipotent Stem Cells/metabolism , Gene Expression Regulation , Cell Differentiation
20.
Semin Hematol ; 61(1): 16-21, 2024 Feb.
Article En | MEDLINE | ID: mdl-38403501

The intricate interplay between Clonal Hematopoiesis (CH) and the repercussions of cancer therapies has garnered significant research focus in recent years. Previously perceived as an age-related phenomenon, CH is now closely linked to inflammation ("Inflammaging") and cancer, impacting leukemogenesis, cancer progression, and treatment responses. This review explores the complex interplay between CH and diverse cancer therapies, including chemotherapy, targeted treatments, radiation, stem cell transplants, CAR-T cell therapy, and immunotherapy, like immune checkpoint inhibitors. Notably, knowledge about post-chemotherapy CH mutation/acquisition has evolved from a de novo incident to more of a clonal selection process. Chemotherapy and radiation exposure, whether therapeutic or environmental, increases CH risk, particularly in genes like TP53 and PPM1D. Environmental toxins, especially in high-risk environments like post-disaster sites or space exploration, are associated with CH. CH affects clinical outcomes in stem cell transplant scenarios, including engraftment, survival, and t-MN development. The presence of CH also alters CAR-T cell therapy responses and impacts the efficacy and toxicity of immunotherapies. Furthermore, specific mutations like DNMT3A and TET2 thrive under inflammatory stress, influencing therapy outcomes and justifying the ongoing tailored interventions in clinical trials. This review underscores the critical need to integrate CH analysis into personalized medicine, enhancing risk assessments and refining treatment strategies. As we progress, multidisciplinary collaboration and comprehensive studies are imperative. Understanding CH's impact, especially concerning genotoxic stressors, will inform screening, surveillance, and early detection strategies, decreasing the risk of therapy-related myeloid neoplasms and revolutionizing cancer treatment paradigms.


Neoplasms , Receptors, Chimeric Antigen , Humans , Clonal Hematopoiesis , Hematopoiesis/genetics , Neoplasms/genetics , Neoplasms/therapy , Mutation
...